Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.957
Filtrar
1.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611802

RESUMO

LL-37 is the only member of the cathelicidin-type host defense peptide family in humans. It exhibits broad-spectrum bactericidal activity, which represents a distinctive advantage for future therapeutic targets. The presence of choline in the growth medium for bacteria changes the composition and physicochemical properties of their membranes, which affects LL-37's activity as an antimicrobial agent. In this study, the effect of the LL-37 peptide on the phospholipid monolayers at the liquid-air interface imitating the membranes of Legionella gormanii bacteria was determined. The Langmuir monolayer technique was employed to prepare model membranes composed of individual classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL)-isolated from L. gormanii bacteria supplemented or non-supplemented with exogenous choline. Compression isotherms were obtained for the monolayers with or without the addition of the peptide to the subphase. Then, penetration tests were carried out for the phospholipid monolayers compressed to a surface pressure of 30 mN/m, followed by the insertion of the peptide into the subphase. Changes in the mean molecular area were observed over time. Our findings demonstrate the diversified effect of LL-37 on the phospholipid monolayers, depending on the bacteria growth conditions. The substantial changes in membrane properties due to its interactions with LL-37 enable us to propose a feasible mechanism of peptide action at a molecular level. This can be associated with the stable incorporation of the peptide inside the monolayer or with the disruption of the membrane leading to the removal (desorption) of molecules into the subphase. Understanding the role of antimicrobial peptides is crucial for the design and development of new strategies and routes for combating resistance to conventional antibiotics.


Assuntos
Anti-Infecciosos , Legionella , Legionellaceae , Humanos , Fosfolipídeos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Colina
2.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(1): 98-104, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38604693

RESUMO

Parasitic diseases caused by protozoan and helminth infections are still widespread across the world, notably in tropical and subtropical areas, which threaten the children and adult health. Long-term use of anti-parasitic drugs may result in reduced drug susceptibility and even drug resistance. Antimicrobial peptides have been demonstrated to inhibit parasite growth and development, which has potential antiparasitic values. LL-37, the only human antimicrobial peptide in the cathelicidin family, has been widely investigated. This paper reviews the progress of researches on the antiparasitic activity of LL-37, and discusses the prospects of LL-37 in the research of parasites.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Criança , Humanos , Catelicidinas/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Antimicrobianos , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico
3.
Eur J Med Chem ; 268: 116276, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452726

RESUMO

The emergence of bacterial resistance has posed a significant challenge to clinical antimicrobial treatment, rendering commonly used antibiotics ineffective. The development of novel antimicrobial agents and strategies is imperative for the treatment of resistant bacterial infections. Antimicrobial peptides (AMPs) are considered a promising class of antimicrobial agents due to their low propensity for resistance and broad-spectrum activity. Anoplin is a small linear α-helical natural antimicrobial peptide that was isolated from the venom of the solitary wasp Anplius samariensis. It exhibits rich biological activity, particularly broad-spectrum antimicrobial activity and low hemolytic activity. Over the past three decades, more than 40 research publications on anoplin have been made available online. This review focuses on the advancements of anoplin in antimicrobial research, encompassing its sources, characterization, antimicrobial activity, influencing factors and structural modifications. The aim is to provide assistances for the development of new antimicrobial agents that can combat bacterial resistance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/química , Venenos de Vespas/química , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
4.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474693

RESUMO

Antimicrobial peptides (AMPs), acknowledged as host defense peptides, constitute a category of predominant cationic peptides prevalent in diverse life forms. This study explored the antibacterial activity of α-conotoxin RgIA, and to enhance its stability and efficacy, D-amino acid substitution was employed, resulting in the synthesis of nine RgIA mutant analogs. Results revealed that several modified RgIA mutants displayed inhibitory efficacy against various pathogenic bacteria and fungi, including Candida tropicalis and Escherichia coli. Mechanistic investigations elucidated that these polypeptides achieved antibacterial effects through the disruption of bacterial cell membranes. The study further assessed the designed peptides' hemolytic activity, cytotoxicity, and safety. Mutants with antibacterial activity exhibited lower hemolytic activity and cytotoxicity, with Pep 8 demonstrating favorable safety in mice. RgIA mutants incorporating D-amino acids exhibited notable stability and adaptability, sustaining antibacterial properties across diverse environmental conditions. This research underscores the potential of the peptide to advance innovative oral antibiotics, offering a novel approach to address bacterial infections.


Assuntos
Anti-Infecciosos , Conotoxinas , Camundongos , Animais , Lisina/farmacologia , Leucina/farmacologia , Substituição de Aminoácidos , Conotoxinas/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
5.
Bioorg Chem ; 145: 107239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428282

RESUMO

Antimicrobial resistance (AMR) is a serious global concern and a huge burden on the healthcare system. Antimicrobial peptides (AMPs) are considered as a solution of AMR due to their membrane-lytic and intracellular mode of action and therefore resistance development against AMPs is less frequent. One such AMPs, temporin-L (TL) is a 13-mer peptide reported as a potent and broad-spectrum antibacterial agent with significant immunomodulatory activity. However, TL is toxic to human erythrocytes at their antibacterial concentrations and therefore various analogues were synthesized with potent antimicrobial activity and lower hemolytic activity. In this work, we have selected a non-toxic engineered analogue of TL (eTL) and performed hydrocarbon stapling of amino acid residues at i to i + 4 positions at different part of sequence. The synthesized peptides were investigated against both the gram-positive and gram-negative bacteria as well as methicillin resistant S. aureus, its MIC was measured in the concentrations range of 0.9-15.2 µM. All analogues were found equal or better antibacterial as compared to parent peptide. Interestingly one analogue eTL [5-9] was found to be non-cytotoxic and stable in presence of the human serum. Mode of action studies revealed membrane depolarizing and disruptive mode of action with live MRSA. Further in vivo studies of antimicrobial against MRSA infection and anti-endotoxin activities in mice model revealed potential activity of the stapled peptide analogue. Overall, this reports on stapled analogue of the AMPs highlights an important strategy for the development of new antibacterial therapeutics against AMR.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeo Hidrolases , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Endopeptidases , Hidrocarbonetos , Testes de Sensibilidade Microbiana
6.
J Mater Chem B ; 12(15): 3676-3685, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38530749

RESUMO

An innate immune system intricately leverages unique mechanisms to inhibit colonization of external invasive Bacteria, for example human defensin-6, through responsive encapsulation of bacteria. Infection and accompanying antibiotic resistance stemming from Gram-negative bacteria aggregation represent an emerging public health crisis, which calls for research into novel anti-bacterial therapeutics. Herein, inspired by naturally found host-defense peptides, we design a defensin-like peptide ligand, bacteria extracellular trap (BET) peptide, with modular design composed of targeting, assembly, and hydrophobic motifs with an aggregation-induced emission feature. The ligand specifically recognizes Gram-negative bacteria via targeting cell wall conserved lipopolysaccharides (LPS) and transforms from nanoparticles to nanofibrous networks in situ to trap bacteria and induce aggregation. Importantly, treatment of the BET peptide was found to have an antibacterial effect on the Pseudomonas aeruginosa strain, which is comparable to neomycin. Animal studies further demonstrate its ability to trigger aggregation of bacteria in vivo. This biomimetic self-assembling BET peptide provides a novel approach to fight against pathogenic Gram-negative bacteria.


Assuntos
Armadilhas Extracelulares , Animais , Humanos , Ligantes , Bactérias Gram-Negativas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Defensinas/farmacologia
7.
ACS Appl Bio Mater ; 7(4): 2023-2035, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38533844

RESUMO

The rising prevalence of multiple-drug-resistant pathogens poses a formidable challenge to conventional antimicrobial treatments. The inability of potent antibiotics to combat these "superbugs" underscores the pressing need for alternative therapeutic agents. Antimicrobial peptides (AMPs) represent an alternative class of antibiotics. AMPs are essential immunomodulatory molecules that are found in various organisms. They play a pivotal role in managing microbial ecosystems and bolstering innate immunity by targeting and eliminating invading microorganisms. AMPs also have applications in the agriculture sector by combating animal as well as plant pathogens. AMPs can be exploited for the targeted therapy of various diseases and can also be used in drug-delivery systems. They can be used in synergy with current treatments like antibiotics and can potentially lead to a lower required dosage. AMPs also have huge potential in wound healing and regenerative medicine. Developing AMP-based strategies with improved safety, specificity, and efficacy is crucial in the battle against alarming global microbial resistance. This review will explore AMPs' increasing applicability, their mode of antimicrobial activity, and various delivery systems enhancing their stability and efficacy.


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Animais , Antibacterianos/química , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Ecossistema , Farmacorresistência Bacteriana , Doenças Transmissíveis/tratamento farmacológico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Adjuvantes Imunológicos
8.
Biomolecules ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540752

RESUMO

Capitellacin is the ß-hairpin membrane-active cationic antimicrobial peptide from the marine polychaeta Capitella teleta. Capitellacin exhibits antibacterial activity, including against drug-resistant strains. To gain insight into the mechanism of capitellacin action, we investigated the structure of the peptide in the membrane-mimicking environment of dodecylphosphocholine (DPC) micelles using high-resolution NMR spectroscopy. In DPC solution, two structural forms of capitellacin were observed: a monomeric ß-hairpin was in equilibrium with a dimer formed by the antiparallel association of the N-terminal ß-strands and stabilized by intermonomer hydrogen bonds and Van der Waals interactions. The thermodynamics of the enthalpy-driven dimerization process was studied by varying the temperature and molar ratios of the peptide to detergent. Cooling the peptide/detergent system promoted capitellacin dimerization. Paramagnetic relaxation enhancement induced by lipid-soluble 12-doxylstearate showed that monomeric and dimeric capitellacin interacted with the surface of the micelle and did not penetrate into the micelle interior, which is consistent with the "carpet" mode of membrane activity. An analysis of the known structures of ß-hairpin AMP dimers showed that their dimerization in a membrane-like environment occurs through the association of polar or weakly hydrophobic surfaces. A comparative analysis of the physicochemical properties of ß-hairpin AMPs revealed that dimer stability and hemolytic activity are positively correlated with surface hydrophobicity. An additional positive correlation was observed between hemolytic activity and AMP charge. The data obtained allowed for the provision of a more accurate description of the mechanism of the oligomerization of ß-structural peptides in biological membranes.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Poliquetos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Dimerização , Micelas , Detergentes , Espectroscopia de Ressonância Magnética , Termodinâmica
9.
Methods Mol Biol ; 2758: 291-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549020

RESUMO

Several amphibian peptides that were first identified on the basis of their antimicrobial or cytotoxic properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides that are present in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves (1) fractionation of the secretions by reversed-phase HPLC, (2) identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal ß-cells without simultaneously stimulating the release of lactate dehydrogenase, (3) identification of active peptides in the fractions in the mass range 1-6 kDa by MALDI-ToF mass spectrometry, (4) purification of the peptides to near homogeneity by further reversed-phase HPLC on various column matrices, and (5) structural characterization by automated Edman degradation. The effect of synthetic replicates of the active peptides on glucose homeostasis in vivo may be evaluated in appropriate animal models of Type 2 diabetes such as db/db mice and mice fed a high fat diet to produce obesity, glucose intolerance, and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Camundongos , Humanos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Linhagem Celular , Insulina/metabolismo , Anuros/metabolismo , Pele/metabolismo
11.
Curr Biol ; 34(7): 1426-1437.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38484734

RESUMO

7An efficient immune system must provide protection against a broad range of pathogens without causing excessive collateral tissue damage. While immune effectors have been well characterized, we know less about the resilience mechanisms protecting the host from its own immune response. Antimicrobial peptides (AMPs) are small, cationic peptides that contribute to innate defenses by targeting negatively charged membranes of microbes. While protective against pathogens, AMPs can be cytotoxic to host cells. Here, we reveal that a family of stress-induced proteins, the Turandots, protect the Drosophila respiratory system from AMPs, increasing resilience to stress. Flies lacking Turandot genes are susceptible to environmental stresses due to AMP-induced tracheal apoptosis. Turandot proteins bind to host cell membranes and mask negatively charged phospholipids, protecting them from cationic pore-forming AMPs. Collectively, these data demonstrate that Turandot stress proteins mitigate AMP cytotoxicity to host tissues and therefore improve their efficacy.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Imunidade Inata/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
12.
Appl Microbiol Biotechnol ; 108(1): 260, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472422

RESUMO

Staphylococcus aureus is associated with dairy mastitis, which causes serious economic losses to dairy farming industry. Antibacterial peptide NZX showed good antibacterial activity against S. aureus. This study aimed to evaluate pharmacokinetics and pharmacodynamics of NZX against S. aureus-induced mouse mastitis. NZX exhibited potent in vitro antibacterial activity against the test S. aureus strains (minimal inhibitory concentration (MIC): 0.23-0.46 µM), low mutant prevention concentration (MPC: 1.18-3.68 µM), and a long post antibiotic effect (PAE: 2.20-8.84 h), which was superior to those of lincomycin and ceftiofur. Antibacterial mechanisms showed that NZX could penetrate the cell membrane, resulting in obvious cell membrane perforation and morphological changes, and bind to intracellular DNA. Furthermore, NZX had a good stability in milk environment (retention rate: 85.36%, 24 h) than that in mammary homogenate (47.90%, 24 h). In mouse mastitis model, NZX (25-400 µg/gland) could significantly reduce the bacterial load of mammary tissue in a dose-dependent manner. In addition, NZX (100 µg/gland) could relieve the inflammatory symptoms of mammary tissue, and significantly decreased its pathological scores. The concentration-time curve of NZX (100 µg/gland) in the mammary tissue was plotted and the corresponding pharmacokinetic parameters were obtained by non-compartment model calculation. Those parameters of Tmax, T1/2, Cmax and AUC were 0.5 h, 35.11 h, 32.49 µg/g and 391 µg·h/g, respectively. Therefore, these results suggest that NZX could act as a promising candidate for treating dairy mastitis disease caused by S. aureus. KEY POINTS: • NZX could kill S. aureus by dual mechanism involved in membrane and DNA disruption • NZX could relieve S. aureus-induced mouse mastitis • Pharmacokinetic parameters of NZX in mouse mammary gland were obtained.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Feminino , Camundongos , Animais , Bovinos , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Modelos Animais de Doenças , Peptídeos Catiônicos Antimicrobianos/farmacologia , Mastite Bovina/microbiologia , DNA/metabolismo
13.
Antonie Van Leeuwenhoek ; 117(1): 55, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488950

RESUMO

Antimicrobial peptides (AMPs) are promising cationic and amphipathic molecules to fight antibiotic resistance. To search for novel AMPs, we applied a computational strategy to identify peptide sequences within the organisms' proteome, including in-house developed software and artificial intelligence tools. After analyzing 150.450 proteins from eight proteomes of bacteria, plants, a protist, and a nematode, nine peptides were selected and modified to increase their antimicrobial potential. The 18 resulting peptides were validated by bioassays with four pathogenic bacterial species, one yeast species, and two cancer cell-lines. Fourteen of the 18 tested peptides were antimicrobial, with minimum inhibitory concentrations (MICs) values under 10 µM against at least three bacterial species; seven were active against Candida albicans with MICs values under 10 µM; six had a therapeutic index above 20; two peptides were active against A549 cells, and eight were active against MCF-7 cells under 30 µM. This study's most active antimicrobial peptides damage the bacterial cell membrane, including grooves, dents, membrane wrinkling, cell destruction, and leakage of cytoplasmic material. The results confirm that the proposed approach, which uses bioinformatic tools and rational modifications, is highly efficient and allows the discovery, with high accuracy, of potent AMPs encrypted in proteins.


Assuntos
Anti-Infecciosos , Proteoma , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Inteligência Artificial , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
14.
J Nat Prod ; 87(3): 600-616, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412091

RESUMO

Since the 1980s, studies of antimicrobial peptides (AMPs) derived from anuran skin secretions have unveiled remarkable structural diversity and a wide range of activities. This study explores the potential of these peptides for drug development by examining granted patents, amino acid modifications related to patented peptides, and recent amphibians' taxonomic updates influencing AMP names. A total of 188 granted patents related to different anuran peptides were found, with Asia and North America being the predominant regions, contributing 65.4% and 15.4%, respectively. Conversely, although the Neotropical region is the world's most diversified region for amphibians, it holds only 3.7% of the identified patents. The antimicrobial activities of the peptides are claimed in 118 of these 188 patents. Additionally, for 160 of these peptides, 66 patents were registered for the natural sequence, 69 for both natural and derivative sequences, and 20 exclusively for sequence derivatives. Notably, common modifications include alterations in the side chains of amino acids and modifications to the peptides' N- and C-termini. This review underscores the biomedical potential of anuran-derived AMPs, emphasizing the need to bridge the gap between AMP description and practical drug development while highlighting the urgency of biodiversity conservation to facilitate biomedical discoveries.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Aminoácidos , Anuros/metabolismo , Pele/química
15.
J Phys Chem B ; 128(6): 1407-1417, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306612

RESUMO

With the urgent need for new medical approaches due to increased bacterial resistance to antibiotics, antimicrobial peptides (AMPs) have been considered as potential treatments for infections. Experiments indicate that combinations of several types of AMPs might be even more effective at inhibiting bacterial growth with reduced toxicity and a lower likelihood of inducing bacterial resistance. The molecular mechanisms of AMP-AMP synergistic antimicrobial activity, however, remain not well understood. Here, we present a theoretical approach that allows us to relate the physicochemical properties of AMPs and their antimicrobial cooperativity. It utilizes correlation and bioinformatics analysis. A concept of physicochemical similarity is introduced, and it is found that less similar AMPs with respect to certain physicochemical properties lead to greater synergy because of their complementary antibacterial actions. The analysis of correlations between the similarity and the antimicrobial properties allows us to effectively separate synergistic from nonsynergistic AMP pairs. Our theoretical approach can be used for the rational design of more effective AMP combinations for specific bacterial targets, for clarifying the mechanisms of bacterial elimination, and for a better understanding of cooperativity phenomena in biological systems.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias
16.
Amino Acids ; 56(1): 12, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319435

RESUMO

Temporin-SHf is a linear, ultra-short, hydrophobic, α-helix, and phe-rich cationic antimicrobial peptide. The antitumor activities and mechanism of temporin-SHf-induced cancer cell death are unknown. The temporin-SHf was synthesized by solid-phase Fmoc chemistry and antimicrobial and antitumor activities were investigated. Temporin-SHf was microbiocidal, non-hemolytic, and cytotoxic to human cancer cells but not to non-tumorigenic cells. It affected the cancer cells' lysosomal integrity and caused cell membrane damage. The temporin-SHf inhibited A549 cancer cell proliferation and migration. It is anti-angiogenic and causes cancer cell death through apoptosis. The molecular mechanism of action of temporin-SHf confirmed that it kills cancer cells by triggering caspase-dependent apoptosis through an intrinsic mitochondrial pathway. Owing to its short length and broad spectrum of antitumor activity, temporin-SHf is a promising candidate for developing a new class of anticancer drugs.


Assuntos
Anti-Infecciosos , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Apoptose , Anuros
17.
ChemMedChem ; 19(7): e202300480, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38408263

RESUMO

Amphipathicity is a critical characteristic of helical antimicrobial peptides (AMPs). The hydrophilic region, primarily composed of cationic residues, plays a pivotal role in the initial binding to negatively charged components on bacterial membranes through electrostatic interactions. Subsequently, the hydrophobic region interacts with hydrophobic components, inducing membrane perturbation, ultimately leading to cell death, or inhibiting intracellular function. Due to the extensive diversity of natural and synthetic AMPs with regard to the design of amphipathicity, it is complicated to study the structure-activity relationships. Therefore, this work aims to categorize the common amphipathic design and investigate their impact on the biological properties of AMPs. Besides, the connection between current structural modification approaches and amphipathic styles was also discussed.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Estrutura Secundária de Proteína , Bactérias , Relação Estrutura-Atividade , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana
18.
Biochem Biophys Res Commun ; 704: 149700, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401304

RESUMO

Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.


Assuntos
Antifúngicos , Triptofano , Camundongos , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Triptofano/química , Lisina/química , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Aminoácidos/farmacologia , Candida albicans , Arginina/química , Testes de Sensibilidade Microbiana
19.
Eur J Med Chem ; 268: 116224, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387338

RESUMO

The emergence of bacterial strains resistant to antibiotics is a major issue in the medical field. Antimicrobial peptides are widely studied as they do not generate as much resistant bacterial strains as conventional antibiotics and present a broad range of activity. Among them, the homopolypeptide poly(l-arginine) presents promising antibacterial properties, especially in the perspective of its use in biomaterials. Linear poly(l-arginine) has been extensively studied but the impact of its 3D structure remains unknown. In this study, the antibacterial properties of newly synthesized branched poly(l-arginine) peptides, belonging to the family of multiple antigenic peptides, are evaluated. First, in vitro activities of the peptides shows that branched poly(l-arginine) is more efficient than linear poly(l-arginine) containing the same number of arginine residues. Surprisingly, peptides with more arms and more residues are not the most effective. To better understand these unexpected results, interactions between these peptides and the membranes of Gram positive and Gram negative bacteria are simulated thanks to molecular dynamic. It is observed that the bacterial membrane is more distorted by the branched structure than by the linear one and by peptides containing smaller arms. This mechanism of action is in full agreement with in vitro results and suggest that our simulations form a robust model to evaluate peptide efficiency towards pathogenic bacteria.


Assuntos
Antibacterianos , Simulação de Dinâmica Molecular , Peptídeos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Arginina/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
20.
Bioorg Chem ; 145: 107151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359706

RESUMO

Antimicrobial peptides (AMPs) are a group of polypeptide chains that have the property to target and kill a myriad of microbial organisms including viruses, bacteria, protists, etc. The first discovered AMP was named gramicidin, an extract of aerobic soil bacteria. Further studies discovered that these peptides are present not only in prokaryotes but in eukaryotes as well. They play a vital role in human innate immunity and wound repair. Consequently, they have maintained a high level of intrigue among scientists in the field of immunology, especially so with the rise of antibiotic-resistant pathogens decreasing the reliability of antibiotics in healthcare. While AMPs have promising potential to substitute for common antibiotics, their use as effective replacements is barred by certain limitations. First, they have the potential to be cytotoxic to human cells. Second, they are unstable in the blood due to action by various proteolytic agents and ions that cause their degradation. This review provides an overview of the mechanism of AMPs, their limitations, and developments in recent years that provide techniques to overcome those limitations. We also discuss the advantages and drawbacks of AMPs as a replacement for antibiotics as compared to other alternatives such as synthetically modified bacteriophages, traditional medicine, and probiotics.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Reprodutibilidade dos Testes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...